6月18日-22日,全球计算机视觉盛会CVPR 2023在加拿大温哥华举行。本届CVPR论文投稿总量达9155篇,最终共有2369篇论文被接收。最佳论文候选为12篇,接收率仅为0.13%。
商汤两篇论文登上最佳论文候选名单,其中自动驾驶研究论文《Planning-oriented Autonomous Driving》(以路径规划为导向的自动驾驶)斩获本届CVPR最佳论文奖(Best Paper Award)。
这是CVPR历史上第一篇以自动驾驶为主题的最佳论文,该论文首次提出感知决策一体化的自动驾驶通用大模型UniAD,开创了以全局任务为目标的自动驾驶大模型架构先河, 标志着自动驾驶技术的重要突破, 为自动驾驶技术与产业的发展提出了新的方向。
CVPR 2023最佳论文,自动驾驶研究获重要突破
自动驾驶技术高度复杂,需要融合多学科领域的知识和技能,包括传感器技术、机器学习、路径规划等方面。自动驾驶还需要适应不同的道路规则和交通文化,与车辆和行人进行良好交互,以实现高度可靠和安全的自动驾驶系统。大部分自动驾驶相关的工作都聚焦在具体的某个模块,缺少能够实现端到端联合优化的通用网络模型。
论文提出的自动驾驶通用算法框架——Unified Autonomous Driving首次将检测、跟踪、建图、轨迹预测,占据栅格预测以及规划整合到一个基于Transformer 的端到端网络框架下,更高效契合了“多任务”和“高性能”的特点,取得自动驾驶技术研究重要突破。
商汤科技联合创始人、首席科学家、绝影智能汽车事业群总裁王晓刚表示,UniAD是业内首个感知决策一体化的端到端自动驾驶解决方案,并且整体系统和性能取得大幅提升,代表了未来自动驾驶技术的发展趋势。
这种端到端的优化在多项关键技术指标上超越了SOTA。比如,多目标跟踪准确率超越SOTA 20%,车道线预测准确率提升30%,预测运动位移误差降低38%,规划误差降低28%。
UniAD 是一项极具创新性的自动驾驶技术,且因其具有很大的潜力和应用价值,目前在学术界和工业界都引起了广泛兴趣和关注。
随着通用人工智能引领的二次革命的到来,以此为基础,期待在未来能推动实现更高阶的自动驾驶人工智能。
CVPR 2023最佳论文候选,加速推动AIGC时代真实感3D内容生成
面向真实 3D 物体的感知、理解、重建与生成是计算机视觉领域一直倍受关注的问题。由于缺乏大规模的真实扫描三维数据库,最近在三维物体建模方面的进展大多依赖于合成数据集。
为促进现实世界中3D感知、重建和生成的发展,论文《OmniObject3D: Large-Vocabulary 3D Object Dataset for Realistic Perception, Reconstruction and Generation》提出了OmniObject3D,一个具有大规模高质量真实扫描3D物体的大型词汇3D物体数据集,覆盖近200个类别、约6000个三维物体数据,包括高精表面网格、点云、多视角渲染图像和实景采集的视频,借助专业扫描设备保证了物体数据的精细形状和真实纹理。
OmniObject3D是目前学界最大的真实世界三维扫描模型数据集,为未来三维视觉研究提供了广阔空间。
利用该数据集,研究人员精心探讨了点云识别、神经渲染、表面重建、三维生成等多种学术任务的鲁棒性和泛化性,验证其从感知、重建、到生成领域的开放应用前景,有望在AIGC 时代推动真实感3D生成方面发挥至关重要的作用。持续引领前沿创新,是商汤在以大装置SenseCore和大模型为核心的AI基础设施领域长期投入,并坚持产学研协同创新的成果。
王晓刚教授认为,在大算力、大数据的支撑下,大模型将以更强大的通用能力引发人工智能领域的巨大变革,同时也会拓展我们的研究视野,激发新一轮研究范式革新。
自今年4月初“商汤日日新SenseNova”大模型体系公布以来,商汤的大模型已在气象预报、遥感解译、开放环境中的决策问题等领域取得了诸多突破性成就。未来,商汤将继续与产学研各界共同拥抱和探索大模型带来的范式革新,为AI的前沿探索开拓新方向和新路径。
郑重声明:此文内容为本网站转载企业宣传资讯,目的在于传播更多信息,与本站立场无关。仅供读者参考,并请自行核实相关内容。